hole boring is required to determine the feasibility of this approach for power transmission through aerosols on a large scale. REFERENCES 1. R.E. Beverly III, Laser-SPS Systems Analysis and Environmental Impact Assessment, Space Solar Power Review 1, 317, 1980. 2. G.H. Ruppersberg et al., Calculations About the Transmittance Window of Clouds and Fog at About 10.5 jim Wavelength, Atmos. Environ. 9, 723, 1975. 3. A.P. Orlov et al., Aircraft Studies of Vertical Infrared Extinction Profiles in the 10-12 pm Window, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 433, 1976. 4. C. Tomasi and F. Tampieri, Size Distribution Models of Small Water Droplets in Mist and Their Volume Extinction Coefficients at Visible and Infrared Wavelengths, Atmos. Environ. 10, 1005, 1976. 5. R.Kh. Almayev et al.,.The Temperature and Water Content in the Cloud Clearance Zone, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 14, 208, 1978. 6. O.V. Volkovitskii et al., “Turbidizing” Effect of CO2 Laser Radiation on Crystalline Clouds, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 543, 1975. 7. S.A. Akhmanov et al., Thermal Self-Actions of Laser Beams, IEEE J. Quantum Electron. QE-4, 568, 1968. 8. V.I. Bukatyi et al.. Thermal Defocusing of the Optical Radiation Traveling in an Absorbing Disperse Medium, Sov. J. Quantum Electron. 3, 37, 1973. 9. V.V. Vorob'yev and V.V. Shemetov, Forced Convection in the Atmosphere Due to Absorption of Luminous Radiation, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 186, 1975. 10. A.F. Nerushev and L.P. Semenov, Propagation of a Light Beam in an Evaporating Liquid-Drop Medium in the Presence of Wind Refraction, Sov. J. Quantum Electron. 6, 665, 1976. 11. P.N. Svirkunov, Possibility of Self-Focusing in the Evaporation of a Cloud Medium by CO2 Laser Radiation, Sov. J. Quantum Electron. 8, 509, 1978. 12. V.V. Kolosov and A.V. Kuzikovskii, Focusing and Defocusing of Light in an Aerosol Exploded by a Laser Beam, Sov. Phys. Tech. Phys. 24, 56, 1979. 13. M.P. Gordin and G.M. Strelkov, Supercondensation Effect in Diffusion Evaporation of a Water Aerosol in Radiation Field, Sov. J. Quantum Electron. 5, 315, 1975. 14. A.V. Kuzikovskii and S.S. Khmelevitsov, Influence of Overcondensation on the Evaporation of a Water Aerosol in a Radiation Field, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 11, 219, 1975. 15. O.A. Volkovitskii et al., Optical “Dimming" of Cloud Medium Due to Interaction with CO2 Laser Radiation, Sov. J. Quantum Electron. 6, 215, 1976. 16. B. Nilsson, Meteorological Influence on Aerosol Extinction in the 0.2-40-^m Wavelength Range, Appl. Opt. 18, 3457, 1979. 17. E.P. Shettle and R.W. Fenn, Models of Atmospheric Aerosols and Their Optical Properties, AGARD Conf. Proc. 183, Optical Propagation in the Atmosphere, 1975. Available from NTIS, Springfield, VA. 18. G.T. Ruck, personal communication, 1980. 19. H. van de Hulst, Light Scattering by Small Particles, John Wiley and Sons, New York, 1964. 20. M. Kerkerer al., Light Scattering Functions for Concentric Spheres. Total Scattering Coefficient, m, = 2.1050, m, = 1.4821, J. Opt. Soc. Am. 52, 551, 1962. 21. P. Chylek, Extinction and Liquid Water Content of Fogs and Clouds, J. Atmos. Sci. 35, 296, 1978. 22. R.G. Pinnick et al., Verification of a Linear Relation Between IR Extinction, Absorption and Liquid Water Content of Fogs, J. Atmos. Sci. 36, 1577, 1979; see also U.S. Army Atmospheric Sciences Laboratory Report No. ASL-TR-0037. 23. M. Kumai, Arctic Fog Droplet Size Distribution and Its Effect on Light Attenuation, J. Atmos. Sci. 30, 635, 1973. 24. B.A. Kunkel, Fog Drop-Size Distributions Measured with a Laser Hologram Camera, J. Appl. Mete- orol. 10, 482, 1971. 25. J.A. Garland, Some Fog Droplet Size Distributions Obtained by an Impaction Method, Q. J. R. Met. Soc. 97, 483, 1971. 26. J.A. Garland et al.. A Study of the Contribution of Pollution to Visibility in a Radiation Fog, Atmos. Environ. 7, 1079, 1973. 27. W.T. Roach et al., The Physics of Radiation Fog: I — A Field Study, Q. J. R. Met. Soc. 102, 313, 1976. 28. R.G. Pinnick et a!., Vertical Structure in Atmospheric Fog and Haze and Its Effects on Visible and Infrared Extinction, J. Atmos. Sci. 35, 2020, 1978; see also U.S. Army Atmospheric Sciences Laboratory Report No. ASL-TR-0010. 29. T.S. Chu and D.C. Hogg, Effects of Precipitation on Propagation at 0.63, 3.5, and 10.6 Microns, Bell Sys. Tech. J. 47, 723, 1968. 30. D.B. Rensch and R.K. Long, Comparative Studies of Extinction and Backscattering by Aerosols, Fog, and Rain at 10.6 p and 0.63 p, Appl. Opt. 9, 1563, 1970.
RkJQdWJsaXNoZXIy MTU5NjU0Mg==